
AFRL-IF-RS-TR-1999-241
Final Technical Report
November 1999

BRIDGING THE DEVELOPMENT GAP

Mercury Computer Systems, Inc.

Sponsored by
Advanced Research Projects Agency
DARPA Order No. D351

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20000118 056
[gHC qpi&m mm®GEED i j

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-241 has been reviewed and is approved for publication.

APPROVED

Ralph Köhler
Project Engineer

FOR THE DIRECTOR: A-
Northrup Fowler
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTC, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

BRIDGING THE DEVELOPMENT GAP

Craig Lund

Contractor: Mercury Computer Systems, Inc.
Contract Number: F30602-95-2-0037
Effective Date of Contract: 28 September 1995
Contract Expiration Date: 30 September 1997
Short Title of Work: Bridging the Development Gap
Period of Work Covered: Sep 95 - Sep 97

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

Craig Lund
(508)256-1300
Ralph Köhler
(315)330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Ralph Kohler, AFRL/IFTC, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimete or any other aspBct of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

NOVEMBER 1999
3. REPORT TYPE AND DATES COVERED

Final Sep 95 - Sep 97
4. TITLE AND SUBTITLE

BRIDGING THE DEVELOPMENT GAP

6. AUTHOR(S)

Craig Lund

5. FUNDING NUMBERS

C - F30602-95-2-0037
PE- 62301E
PR- D002
TA- 01
WU-P3

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Mercury Computer Systems, Inc.
199 Riverneck Road
Chelmsford MA 01824-2820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTC
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-241

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer:Ralph Kohler/IFTC/(315) 330-2016

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words!

Bridging the Development Gap is contractual cooperative agreement between Mercury Computer Systems, Inc. and
DARPA. This program was developed because a software gap exists between the workstation-based research phase of a
signal processing project and the more contained prototyping phase. The transition requires a shift from a workstations rich
environment into an embedded system that typically offers only basic system software. The gap reflects more than just a
lack of software tools. It concerns new challenges such as: parallel decomposition, optimizing data transfer, heterogeneous
processing, interfacing with I/O devices, memory constraints, as well as real-time throughput and latency challenges.

Mercury has bridged the indicated software gap by delivering on this program a deployment-focused environment for
algorithms created in a popular research language, MATLAB (and its companion SIMULINK). The project has had the full
cooperation of The Math Works, owner of MATLAB and SIMULINK. Mercury's discussions with Prime Contractors
building large, embedded systems had shown MATLAB to be nearly universal tool of choice within the research phase of
these projects. Demand for a MATLAB deployment path thus clearly existed.

The most significant element required to pull MATLAB and SIMULINK into parallel processing is to create a "mapping
tool" and an underlying "component" run-time system.
14. SUBJECT TERMS

Computer Network Security, Intrusion Detection
15. NUMBER OF PAGES

 72
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

1.0 Executive Summary 1

2.0 Introduction 4

2.1 Application Markets of Interest 4

2.2 Importance of MATLAB 5

3.0 Bridging the Development Gap 5

3.1 Some Component Programming Concepts 6

3.2 Component Application Example 7

4.0 MATLAB on RACE 10

4.1 Talaris Environment for Component Programming 11

5.0 Application Performance 14

6.0 Summary and Future Research 15

Appendixes

[A] Talaris—The application framework for scalable heterogeneous systems 20

(Presentation)

[B] Talaris applied to Peakware product 48

(Mercury product announcement)

[C] Further product developments towards MATLAB use 53

(Mercury product annoncement)

List of Tables

Table

1 ECAD analogy components for building electronics compared to multicomputing

component definitions 7

2 Summary of BAA95-19 results 16

XX

List of Figures

Figure

1 Life cycle of typical embedded application 4

2 Representation of Modules, Parts and Connections 6

3 Software model of a typical SAR application 8

4 Simple hardware configuration 8

5 Assignment from the software domain to the hardware domain 9

6 Scalable function created and assigned to multiple processors 10

7 Talaris environment as a framework for component programming 12

8 Function view of the Talaris Moduler environment 17

Xll

1.0 Executive Summary
This final report summarizes the results of cooperative research, that Mercury Computer

Systems, Inc. performed on the "Bridging the Development Gap" program. The program

was supported by the Defense Advanced Research Projects Agency (DARPA) under

BAA95-19, entitled 'Programming and Runtime Environments and Operating Systems".

The high-level program goals as described in Mercurys original proposal were:

• Mercury intends to bridge the software gap between defense research, prototypes, and

deployment development stages. Developers who take advantage of Mercury^

proposed innovations can expect experience increased productivity resulting in better

solutions sooner, at lower cost.

• Mercuryb proposed component run-time system moves important functionality away

from programming tools and into system software (where the functionality belongs).

Mercury will work to make its run-time interface an open standard that is widely

supported by tool and embedded system vendors. Improved interoperability will

result.

• With improved interoperability, the overall embedded community will gain from a

larger collection of software tools, each supporting multiple hardware platforms.

• With improved interoperability, defense tool vendors can focus their limited resources

on building better tools, instead of porting into different operating systems.

• The underlying component programming model Mercury advocates promotes the re-

use of software modules and maintainability of large software projects.

A software gap exists between the workstation-based research phase of a signal

processing project and the more constrained prototyping phase. This transition requires a

shift from a workstation's rich environment into an embedded system that typically offers

only basic system software. The gap reflects more than just a lack of software tools. It

concerns new challenges such as: parallel decomposition, optimizing data transfer,

heterogeneous processing, interfacing with I/O devices, memory constraints, as well as

real-time throughput and latency challenges.

Mercury has bridged the indicated software gap by delivering on this program a

deployment-focused environment for algorithms created in a popular research language,

MATLAB (and its companion SIMULINK). The project has had the full cooperation of

The Math Works, owner of MATLAB and SIMULINK. Mercury's discussions with

Prime Contractors building large, embedded systems had shown MATLAB to be a nearly

universal tool of choice within the research phase of these projects. Demand for a

MATLAB deployment path thus clearly existed. On their own, several primes had

already undertaken projects to provide rudimentary interfaces between Mercury's

embedded platform and MATLAB.

The most significant element required to pull MATLAB and SIMULINK into parallel

processing is to create a "mapping tool" and an underlying "component" run-time system.

Mercury has delivered functionality that is not specific to MATLAB nor SIMULINK, but

can be leveraged by other tool vendors. To help achieve this broad goal, Mercury and

The Math Works have fully documented all interfaces. Mercury strongly believes that our

industry needs those open interfaces that facilitate interoperability between development

tools.

Mapping Tool.—Most of the efforts for this program focused on the Mapping Tool.

This is because today's SIMULINK cannot generate code for multiprocessor

environments. Our Mapping Tool pulls SIMULINK into the parallel world. SIMULINK

visually represents applications as a graph of interconnected functions in boxes connected

by lines. The lines represent data flow between functions.

Mercury's Mapping Tool enables manual assignment of functions to specific hardware

and assignment of interconnections to specific data transfer APIs. Proper mapping

(assignment) is critical to meeting embedded system performance and efficiency

requirements. To permit manual assignment, the Mapping Tool's graphical user interface

simultaneously shows a SIMULINK's logical "netlist" and the target hardware's physical

reality. Therefore, our Mapping Tool supports graphical specification of the physical

configuration of embedded systems.

Component Run-Time System.—Mercury has developed an underlying run-time system

that supports a component programming model. Such a run-time system processes a

"netlist" which specifies the interconnection and processor assignments of software

modules available as object code. From the netlist, the run-time system synthesizes the

required executable images, loads the images into appropriate processors, sets up the

"interconnections" as inter-process communication objects, and begins execution of the

application.

The underlying "netlist" specification is actually a scripting language. Specifically, we

have created a specialized Tool command language (Tel) extension package that we call

ACL (Application Configuration Language).

Mercury's "Bridging the Development Gap"program started in August, 1995. At its own

expense, Mercury had already started work on a standard component runtime system

(Talaris, see Appendix A). Mercury had delivered review copies of a detailed Talaris

interface specification to several major software tool developers, including The Math

Works.

We have completed the software tools as proposed for the program in FY97. Our test

partners, MITRE, NUWC, and Integrated Sensors Inc., have validated anticipated

productivity benefits. The program ended in September 1997. Two other DARPA-

sponsored programs have build upon our results in FY98 and beyond.

Multiple commercialization programs exist, mostly at industry's expense. Spectron

Microsystems has planned a commercial variant for their SPOX-MP operating system.

The component runtime system created under the program is now in commercial use by

the CapCASE visual development environment (see Appendix B) from Matra Cap

Systemes (France). UCB's Ptolemy group, led by Professor Edward Lee, is building our

runtime into Ptolemy in conjunction with new research into scaleable systems.

2.0 Introduction
This final report describes recent research and development work related to BAA95-19

that has significantly improved developer productivity for parallel programming of signal

processing applications today, while laying the groundwork for dramatic advances in the

future.

2.1 Application Markets of Interest

Mercury builds computers primarily for embedded applications that process live sensor

data. In the government electronics area, Mercury RACE® systems fit into radar, sonar,

and signal intelligence systems. For the diagnostic medical imaging market, Mercury

products connect directly to scanners for magnetic resonance imaging (MRI), computed

tomography (CT), positron emission tomography (PET), and digital X-ray. Emerging

application markets such as digital video and wireless communication processing are

expanding opportunities for multicomputers into areas that require increasing bandwidth

capacity.

These applications are also at the forefront of research. New sensors, new algorithms,

and new technology continually push what is possible, and more importantly for Mercury,

what is required from the computing environment. Our customers depend on 'Vapid

prototyping" and implementation - flowing results from research to product as quickly as

possible. The life-cycle stages of a typical embedded application are represented in

Figure 1.

Figure 1. Life cycle of typical embedded

application.

The cylinders in Figure 1 represent the steps a new algorithm typically goes through

between inspiration and volume deployment. We have labeled the steps Research,"

'prototype," and "deployment." The prototype and deployment phases require a real-time

architecture capable of connecting directly to real-time streams of high-bandwidth data.

The deployment phase in particular runs on a real-time target, not on the host

workstation.

2.2 Importance of MATLAB

A survey of Mercury's customers has shown that a significant majority of algorithms

deployed on our systems began their life cycle on a workstation in the MATLAB®

programming environment from The Math Works. This high-level tool enables the

researcher to conceive and explore algorithms easily.

The Math Works has also added tools to the MATLAB product family to address the

transition from research to prototype. These tools include the MATLAB Compiler to

translate MATLAB M-files to C source; the MATLAB C Math Library for running that C

code independent of MATLAB itself; the SIMULINK® block-diagram environment for

simulating controls, signal processing, and other data-flow systems; and the Real-Time

Workshop for generating C code from SIMULINK models.

However, the gap to deployment remains. The MATLAB C Math Library runs on the

host, so it does not address deployed target-based implementations. Also, the

Math Works tools do not address the issues of scaling to multicomputer targets.

3.0 Bridging the Development Gap
To bridge the gap from the research to real-time implementation, two things will have to

be done. First, the MATLAB C Math Library must be ported to the target environment.

Second, a mechanism must be created to define and implement a scalable solution. This

latter point will build on proven component programming concepts developed in other

markets.

While it is not necessary to use component programming techniques to leverage the

embedded MATLAB C Math Library, a few component programming basics are

presented in the next section, followed by a description of the embeddable RACE

MATLAB environment. This is followed by an overview of the component

programming infrastructure. Finally, we look at performance issues and future

developments.

3.1 Some Component Programming Concepts

In component programming, a software application is expressed as an interconnection of

software Modules that executes on a configuration of hardware Modules.

A software Module consists of executable code that operates on data and commands via

one or more Ports of the Modules. Interconnections of Ports between Modules are

Connections. Graphically, the relationships of Modules, Ports, and Connections are

shown in Figure 2.

Ports Connection

Module^

mmmmmmmmmmmmm

Module

^mmmmrm-itmmm-wtm

Figure 2. Representation of Modules, Ports and Connections

In the RACE implementation, Modules are POSIX threads or processes, Ports are various

types of protocols (e.g., message passing, synchronization, and shared-memory

application programming interfaces (APIs)), and Connections are objects that attach to

Ports.

Hardware Modules consist of processors and their memory systems, the interface to the

processor, and the connection of interfaces (e.g., connection to a shared bus or point-to-

point fabric). Component programming is analogous to the ECAD design principles of

Part, Pin, and Signal, as shown in Table 1.

Table 1. ECAD analogy components for building electronics compared to

multicomputing component definitions

ECAD Software System

Hardware

Part Module Processor

Pin Port Interface

Signal Connection Connection

Just as ASIC designers have leveraged reusable component methodology for rapidly

creating complex chips, multicomputing application developers will also reap

productivity gains by using methods and tools that leverage component technology. A

complete application consists of software components and their Connections, system

hardware components and their Connections, and the assignment (or mapping) of the

software components to the system hardware components. An example is given in the

next section.

3.2 Component Application Example

When thinking about a programming problem, a signal processing engineer usually draws

a block diagram like the one in Figure 3. For applications characterized by a series of

transformations, such as in a myriad of signal, image, and media processing applications,

sketches of the type in Figure 3 are the most "natural" manner in which the application

engineer expresses the application.

In Figure 3, the blocks represent software components written in MATLAB, C, assembly

language, or whatever is most appropriate; the lines show Connections, or how Modules

communicate with shared memory and semaphores, and other techniques. The coders of

the individual software Modules can create reusable Modules without extensive

knowledge of the intricacies of the total application or the nuances of the target operating

system.

But note, Figure 3 shows only the software view and does not reflect any specifics of the

hardware upon which ultimately the algorithms will run.

data
UnpBcJiing

Viiti
Cälftul&tä

Parameters

Vim

irtat

Azimuth
Compression I

Figure 3. A software model of a typical Synthetic Aperture Radar (SAR)

application shown as a collection of interconnected software modules.

In Mercury s heterogeneous RACE architecture, target processors include i860,

PowerPC™ , and SHARC® DSPs. A small configuration appears in Figure 4.

Figure 4. A simple hardware configuration.

We can consider an inventory of Modules compiled for those processors as a set of

reusable software components.

In its simplest form, using component programming techniques for multicomputing is to

execute each of the software Modules in Figure 3 in parallel on the hardware in Figure 4.

Simply assign each block to its own processor, as in Figure 5. If this assignment does not

produce the desired throughput, then the engineer may decide to parallelize a single

Module across multiple processors (Figure 6) to improve the overall performance.

Software Domain

Sananr
Input

^>>SSl

Pulait

ismmmmmmm

:«<

Hardware Domain

Azimuth
Gorwr*ss»of»

'MI«; I asss

! In ■■ i g Image
format

;WAV*v*v+Vi

Figure 5. The illustration shows assignment from the software domain to the

hardware domain. The fill pattern indicates one example of how the software model

is assigned to the hardware model.

Software Domain

Senaor
Input -mm

UhpftcM(*j

w<*
Calculate

Parameters I

tut
Pulse

CompfS®8»n

wmmmmm

« ti Azimuth
Owner*«»*!*

Figure 6. In this example, a scalable function is created and assigned to multiple

processors to improve performance.
<_

Mercury has created an environment that implements the thought process represented in

Figures 3 to 6, from specification through execution. This environment in part relies on

the Application Configuration Language (ACL). For ACL overview materials, reference,

and tutorial, see:

• www.mc.com/talaris_fold/talariseet.html,

• www.mc.com/backgrounder_folder/icassp/icassp.html,

• www.mc.com/talaris_fold/talaris/slideO.html.

But before we can describe the component programming environment, we will describe

how to turn MATLAB M-files into components.

4.0 MATLAB on RACE
The Math Works and Mercury have collaborated to accomplish the task of porting the

MATLAB C Math Library to target embedded processors. A developer, using the

MATLAB compiler (mcc) and the RACE tool-chain, can compile an M-file to an object

file that is linked with the MATLAB C Math Library and other libraries. Since

MATLAB Modules can call C entry points, all of the APIs provided in RACE and by

third parties are available to the MATLAB developer.

10

Assuming that a "monolithic" M-file exists for an application, the following steps are

required to take advantage of the component programming tools for MATLAB:

1. The monolithic M-file is carefully studied and re-implemented as multiple

separate M-files that each represent a piece of useful processing. The M-files will

become individual software Modules.

2. Each M-file is compiled with the MATLAB compiler to create a C code version.

3. An ACL template is created to describe the Port interface for each M-file. This is

typically a few lines, very similar to a C prototype declaration, that lists the input

and output Ports, plus any attributes and properties of each Port. Port types for the

first implementation are limited to MATLAB matrices and synchronization (via

semaphores). This step is easily accomplished with a text editor or can be semi-

automatically generated using the Inspector tool described below.

4. The ACL template files and the compiled M-files are input to a utility program

that creates a C code 'Port wrapper" around each compiled M-file. The output of

the utility program is passed on to the C compiler to produce object files that

represent reusable MATLAB software Modules.

5. Typically, but not always, object files would be organized as libraries using a

standard archiving utility.

4.1 The Talaris Environment for Component Programming

A workstation hosts a collection of tools, the Talaris Modeler, and a variety of generators.

The output of a generator is a "Launch Kit" for a specific target platform. A Launch Kit

contains all the necessary image files and data to load, initialize, and execute the

application. A small Launcher program is required on the target platform to open a

Launch Kit, and perform the launching (load, initialize, and execute).

With this infrastructure, application development is equated to building a fully specified

and populated application model in the Talaris Modeler. A fully specified application

model contains:

11

• A system hardware model that expresses the instances of hardware Modules and

their interconnection.

• A software model that expresses the instances of software Modules and their

interconnection.

• The assignment of software Modules to hardware Modules.

A fully populated model means that object files (i.e., a ".o"file or library entry) exist for

each software Module (for the assigned hardware Module type) and the hardware exists.

Many useful development activities can be accomplished without a fully populated

model, but that is not a subject of this report.

Figure 7 represents the component programming infrastructure developed as a result of

Mercurys ongoing research and development efforts, with assistance from DARPA

(BAA95-19). This report provides an initial description of this environment.

Mapper
Inspector

SIMULINK

Tools

WORKSTATION

Resfcöf char/Developer using
MATLAB, C, Assembly ,,,

 EMBEDDED TARGET
^ ■•* ~ P*

Talaris Madoi Ititurtaca

MoälleF Generators Kita

Launch RACE

Launch SPOX

Launch PDSIX

Launch MPf

Launch ...
'liUiM'imiiiiJ»Jmlt«aW

Launchers

Figure 7. Talaris environment as a framework for component programming.

12

Current tools in Figure 7, future tools, and the ACL are means by which the user builds

the model components. The tool substrate of Figure 7 is designed to allow simultaneous

interaction with the Talaris Modeler for multiple tools. The current tools are focused on

expressing the application model. We will discuss other types of tools in Section 6,

Summary and Future Research. A brief description of the current application model

expression methods is:

• The Inspector Tool—Inspector is a browser-like graphical user interface (GUI)

that shows all class types and instances of all Module types. Properties and

attributes of all objects can be inspected and modified. New Module types and

instances can be created with Inspector.

• The Mapper Tool—Mapper is a browser-like GUI that shows the various Talaris

domains and assignments between the domains. Domains are created, in part, to

facilitate the assignment problem of scalable applications. The current four

domains are software, process, target, and hardware. Individual software Modules

are first mapped into processes. Next, processes are mapped onto an idealized

hardware configuration (target domain). Last, the ideal hardware configuration is

mapped onto the actual hardware that a user has available at that moment. The

reader is referred to the ACL references in Section 3.2. Mapper can be used to

make, modify, or view assignments. Making assignments across domains is done

with a "click-and-drag" interface.

• SIMULINK~For our current research, Mercury and The Math Works used the

diagrammatic GUI of SIMULINK for 'box-and-line" representation of software

and hardware models. The reader should note that this use of Simulink is strictly

as a drawing editor GUI and has no other functional relationship to The

Math Works Simulink product. The user can create diagrams of software or

hardware models which are then translated to the Talaris Modeler. No

assignments are done in the SIMULINK GUI; typically, assignments are done

with Mapper.

13

• ACL-The Talaris Modeler contains an ACL interface for importing ACL

programs. ACL programs can express a complete or partial application model.

As with all the tools described here, the application model can be built

incrementally; in the ACL case, by importing a series of ACL programs. The

Talaris Modeler can also export ACL so that any changes done to the model can

be captured in ACL. Use of ACL by the application engineer is optional, and no

ACL knowledge is required to use the tools.

The Talaris Modeler offers completeness checks as the application model evolves. When

fully specified, assigned, and populated, the model is ready for kit generation. Currently a

generator exists for Mercury RACE systems, and the Spectron SPOX-MP operating

system environment. The other generators shown in Figure 7 are under consideration for

future work.

5.0 Application Performance

A goal of the Talaris component programming research is to maintain performance while

gaining the productivity and portability benefits of component methodology. The Talaris

Modeler does not add any runtime code nor perform any runtime orchestration of

Modules.

The Launcher does perform initialization sequences (e.g., initialization of interprocess

communication objects such as sockets, semaphores, and mapped memory areas) that are

not expressed in Modules but are derived from the application model and specified in the

Launch Kit. Such initialization actions are not considered part of the actual running

application.

Since these initialization sequences can be quite tedious, error-prone and vendor-specific

derived initialization is a significant productivity benefit of the component programming

approach. A Talaris Generator builds an executable as specified by the application

14

model. If the model expresses what the developer would normally do manually, then

execution time difference between manual methods and Talaris generation is nil.

Actual performance depends on:

1. The efficiency of the software Modules for each type of processor,

2. The implementation of the various Port and Connection types for the target

platform, and

3. The effectiveness of the software-to-hardware assignment.

The first issue is dependent on the writer of the software Module, and for high-level

language Modules, the quality of the compiler. The second dependency is the

responsibility of the platform vendor or possibly a third-party API implementation.

Finally, the last point above is currently in the realm of the application engineer who must

empirically or by other means develop an optimum assignment.

ACL and the current tools are present to help the developer build application models with

perhaps thousands of software Modules distributed across hundreds of processors. Future

research offers advancement for issues that go beyond application building to further

boost development productivity.

6.0 Summary and Future Research
Mercury has created an environment that implements the DSP and data-flow thought

process from specification through execution. A core modeling tool has been developed

with which other tools can interact. Application experts prefer this environment because

it matches how they were trained to think about signal processing problems.

Scaling an application from a small laboratory hardware configuration to a larger

deployed configuration can be simplified using this methodology. With this approach,

the Talaris Modeler infrastructure delivers its significant productivity benefits without

adding any appreciable performance overhead at runtime.

15

A summary of the results gained from our efforts on BAA95-19 is shown in Table 2.

ACTIVITY

Table 2. Summary of BAA95-19 results.

 BEFORE BAA95-19 AFTER BAA95-19

Algorithm design and test

Reusable component design

Create software components

Connect components

Map software to hardware

Build

Run

MATLAB on workstation

Embedded in doc and code

Manual code development

Hand-coded variable names

Hand-coded initialization

Makefiles and shell scripts

Shell scripts and setup code

MATLAB on

workstation

Captured in ACL

MATLAB Compiler

Talaris Wrapper Tool

Talaris Inspector Tool

SIMULINK Config.

Toolbox

Talaris Mapper Tool

Talaris Generator

Talaris Launcher

Unlike visual tool developments of the past, the focus of this stage of the research was

applying component programming constructs to - and developing a modeler for -

multicomputing. The substrate that Mercury developed for Talaris uses component

programming as a way to build, maintain, and update a model of the application. Figure

8 illustrates the conceptual model of our activity today and possible future directions.

The modeler holds a dynamic model of an application so that various tools interact with

the model, sometimes simultaneously, to scan, modify, or annotate the model as an

application migrates from a functional specification to an optimized running application.

Future development might include simulation, performance analysis, automatic

assignment, and fault reconfiguration tools. As a simple example of interaction among

tools, consider an iterative cycle between an assignment tool and a performance analysis

tool. Given a running application, the performance analysis tool updates the model (that

is, modifies properties of Modules) with new performance metrics. The assignment tool

16

reads the new metrics and reassigns Modules for an improved optimization. Similar

interactions, through the application model, are anticipated for the other tools in Figure 8.

Productivity, Portability, Performance

Application
Expression

Component
Libraries

& Components

SIMULINK

Performance
Analysis

Generators/
Launchers &

Debugging Tools
Inspector

Simulation

Automatic
Assignment

Figure 8. A function view of the Talaris Modeler environment with future tool

examples.

The Talaris Modeler uses open, documented interfaces incorporating Java and the Tool

Command Language, Tel, and is also platform-independent. Our plans include generators

for other computer architectures and integration of other types of advanced tools.

Our program has made significant contributions towards the objectives outlined within

BAA95-19 and has produced the following benefits:

17

• Resulted in a 'parallel, embedded, heterogeneous, real-time" MATLAB and

bridged the software gap between research, prototypes, and deployment.

Developers who take advantage of our innovations will experience increased

productivity resulting in better time-to-solution at less cost (see Appendix C).

• Our component run-time system has moved important functionality away from

programming tools and into system software (where the functionality belongs).

We believe our run-time interface can become a standard that could be widely

supported by tool and embedded system vendors.

• As a result of improved interoperability, the overall embedded community gains

from a larger collection of software tools, each supporting multiple hardware

platforms.

• As a result of improved interoperability, tool vendors can focus their limited

resources on building better tools, instead of porting into different operating

systems.

• The underlying component programming model we advocate promotes the re-use

of software modules and maintainability of large software projects.

• Our documented interface descriptions can become the basis of an industry-wide

standardization effort.

The research performed on this program has sought to eliminate significant steps from the

development process used in most real-time, embedded, parallel processing projects.

Therefore, our partnership with DARPA and Rome Laboratory has contributed to the

United States'overall goal of maintaining a technological and competitive edge in the

world. Our partnership has done this by making it faster and easier to deploy high

performance computing technologies in typical embedded signal and image processing

applications.

RACE is a registered trademark of Mercury Computer Systems, Inc. PowerPC is a trademark of IBM Corp.

and SHARC is a trademark of Analog Devices Inc. Matlab and SIMULINK are registered trademarks of

The Math Works, Inc. Other products may be trademarks or registered trademarks of their respective

holders. Mercury believes this information is accurate as of its publication date and is not responsible for

any inadvertent errors.

18

Appendixes

[A] Talaris— The application framework for scalable heterogeneous systems

(Presentation)

[B] Talaris applied to Peakware product

(Mercury product announcement)

[C] Further product developments towards MATLAB use

(Mercury product annoncement)

19

Appendix A.

Talaris— The application framework for

scalable heterogeneous systems

(Presentation)

20

G0

S

&5

5

X 0^
b -^■^

o
>>

o
a 9
« o s- o
t. a

ti
on

fo

r
ro

ge

C8 a>
a>

A ffi

& a>
<! 2

o> 5«
.0 as H

<Z3
-\

>5

0)

Ik

i
<D
E

c
.o
■*-l

.8

■S

IS

to
O)

E

O

E

ft

3

I
O
Ü
b
3 s
to

o>
o>
t-
©

21

an
St

e

±1 co
x © CD
© > -c

a
E
o

: ü

°> 2
c «

■E 'S
ö) .a
CD ^

■Q (/)
CD .2
f +■»

^ "E
3 *-
— O
(0 Q.

■- Q.

a> °
O CD
Q. C
^ >-
—' CD

Ü o

!§
CD
N Ü

c o
CD >-
*J CD w 'S > CD
10 .C

= CD

E
o
a
CD

o

(/)

(A
CD

CD

Ü a)

Eg
s £
CO O

o o

2 S
3 :=
O) a.
*= a
c ra
O h.
o o
Ü £

ü £
CD O

_ Q- c

i- .2 CD CD

© E

CD 9>

£ i?
c "a
CD o a. -c
X o
CD £

T3 c

CO co ■ ■

T3 "O _

N 12 to
== « -S
.2 co °-
" S o <D o £

W ü fl)
:= N

CD Q.F
Co *-

° o 9-

c <D 5

/« W <D
J2 In "° "T Si O

5 is w

CO
o

CD a o
a >
Q. CD
CO "C

CD o O
> co ca
Q) <D CD

U)

c
o
CO
o

12
CD a.

o ©
2 CD

(/)

C
CO

ß Q.

o .—

o

CD :. _

^ *- r •s ° o
O CD a

S £ CO

I 3 S
»*- — CD
S= j0 "1
■c +: c

CD 3 2 S CD Q.
CO

« CO
*J _
« CO
U CD
= i-
Q. b.
Q. O
CO *-
X ®

8 ®"

CD W CD
Ö) CO c
^ 0) c

^» CD
>

0) — JQ

CD •I go-
_ CD £
15 1 t
Ü © g
CD 'S ^

+3 O

CM

i
E

c .g
15 u

I
c <o
i2

O)

E

Ü c
of
E

% ft
v.

3

I
O
Ü

3
P

©

22

st

s

,<

©

CD
73

8 «
o) 2
k. er
3 (1)
° "2 — w «

S c =
^» ~ >* ö a) =
Cj -Q 3

~ c o
§73 *
«"5 2
u o «

© c o.
«M o "C
s- = ü
22 « w

•* I =
ö .S to
0> c 73

eS « 03
5« 03 (/)
Ö 3 ®

•fr" ^ es
^ o

'S
o

fl
es

'S*
o
OH

O
P©

«8

©

es

e
o

• PM
*^
es

•p*

'S
&
es
e
es

T3

c
_o
"'S
03

E

c
c
o

■ MM

+■"

2
3

ä o E -g

c
o

■ MM

03

E

c
■ MM

c
<D
c
o
CL

E
o
o

73
O
o
c
o

tf)
c
o

■ MM

(0

tf)

w

!!— 03

5«

WD
S3

"es

c
o
o
d)
k.
03

o
tf)

c
03

2
03

73
k.
03

JE
0)
N

ü
tf)

<D
C
C
03
E

I* 03 3

* g
C 73

jS §
03 «-

E -s< S
</)

tf)
3
O
(1) c
<1>
D)
O
v.
<D

U 2
P©

C
<D

5«
E.E
ro—

</> .2
es E
tf) £
0).-

x I?

CD

o
E
c
o

"55
73
£
o
+3
03
O

ü)

<
o

« ® > 5 CD 5
N C
03 03 (0

= ü o
c ^ o £ 73 ü .^ c ü

O
a>
Q.
tf)

E
a>
+j
tf)
>»
tf)

73 .2 *S'

§ 2g
3 ö) g-

tf) o >
ü ü <D

ü ° O

Q. C
Q. 0)
03 73

C

03
O
tf)

o
Q. C
3 O

C
03

0)
tf)
O
£L
E

Q.
(1)

73
C

■ MM

c
*Ö3
E
0)

<D 73

•^ O

E?g
IS S b
= *- Q.

C
(1)
E

03 tf) <D

03 a> o
a

2f ü uj 75 (o Q a:

■= xj
E 03

— C -
LU LU (0

4)
CM co "* u) <o r*. oo

i

c .o

i2
(b

-Q
E

ü

w"
E
•S
2.

3

I
O
O

3

I
lO
O)

t •«fr
cn

23

o
;<»*

ft,

.£2

(5
g ^

cu
s
su
o

p-4
<u
>
4>

'O
s
o

c
co o
o +■>

• PN CO M *->
& V)

es o
i £
o
**
co

CD
4-*

u e
<u o
S (/>
0) c o 3

^»y k.
<u

-a
H

0
(/>

d*
<5
"■"^ *-»

S, «- Ö) O
CO M-

S. w

s °
§1
co c

•- =

O c

(0 c
Ü =*.

Q. ü *
Q. <D ^
< £ Ü *u *-» c CO

0) W CO

<D Q. is
ü <i> «
o o 0 «- O c
a is u

B
O

^d
S3
CO

C

CO
N

• »■<

»UN

CO

o
o

0)

V)

CO
Ü

L.
CO

CU £
XI

S3
s
CO

H

c
o
(A
c
3

O
CO

a .-= —
£ v Q.
*- Ä Q.
J: J= co

s if
T3 CO C
CD -1 C

? « E
CD Q. CD

t/> ° *- .12 CO O

i
E

c
.o

I
■8
■S

<D

IS

O)

t

o

(0
E
•S

3

I

o>
I

©

24

i_
CD

m
en

tio

n Q.
E
o ^ ° Q. CO

-^ co
CD JX. 0 -^

CD § ta
rg

m

ul

® CO
CO
CO
0
o

-Jii Co o 3 i=. !_
o O) Q.
$ 2
o °-\

L_ L_ \
CD W \ o o CO
3 ® \
CO 3 2

CO

a> fe o
c ' fe-

CO
CD
O o CO T3 P1 w

DO 4 c 3 1_

2 E / 0) CO Q.
O -1

./
C

i L

-1 m CO LU
LU

O
V

CO
CD
O
o +J

o * i_
o a.

o - 1—►
c
3 ;
CO
_J

i
E

c .g
.8
§:
<c
■8

■2
ID

■Q
E

o

w"
E

■S
3

I
O
Ü
b
I
o>
■>»•
O)
o>

©

25

3

I
O
O

I
■<»•

©

26

ü CO

"D ro

II
0) o
00

;ftk

i k

ü c
3

i
E

c .g

I
a

■<*

.2
«

in
o>

E

o

to"
£

CO

3

I o ü
I*
IO
<3>

i
■*>■
o>

©

27

CO
s

c: .co
.0 5

^

-»3
CD

.O

1
CO

0
0

CD

CD

CO
c
.0
»13
O
CD

-£2 c
CD

00

■K
i

is
 D

if
fe

re
n o

HI

< a:
z
O
1-
< o

CD

c
0

CO

0

£2
CD

&

CD

1
O
O

&
O
O
CD

.CO
C:
CD

0

CD
c
CD
O)
CD
CO
=3

C

8
CO

1

C
c
0
O

CO
.<!>

Q
CD

CD

£
S

s
1

-5
•§
.co

1
CD
CO

.0)
CO
CO
CD

to

5
CD

CD

-2
CD
C
CD

CD

■Q

"O
CD

§

CD

v..
CD

-8 c
CO

TO
-=

■12
0
-2
.0
-t
5
CD

§■
1

g
CO

E

c
.0
•0

.8
&
«t
•8
-5
i2

iS

&. _J

»3 Q.
Q_

g
<
CO

a:
< LU HI LU

10
O)
o> **"
v."
CO

■9

*i _j § 2 _i _l 2 E
0

< < < -5 a -5 Ü TO -5 < s
0

g h- CO CO *c < c < C cl CO §

h- (D c CO CD c to to CD CD

LU
T3
O
O
O

g

Q.

a.
<
0

T3
O
O
a.

g
JO

CD
-Q
CO
3

CD
XJ
CO •*-•
3

O

i2

c
'c 0

10"
E

CO O O
CD

E
0 0

i*—
0
CD

3
.♦—•
CD
to

E
0 Q

O
CD
X

O
CD

Q.

Ü

T3
C
CO

HI
a.
■ ,0

Q.
CO

1
CD
Z3 0

CD CD

CD

to
CD

CD
3 3

"-: S3*.

>
HI
Q

c
0

'•+-»
CO
0

-^
CD

E
CD .*—*
to

CO

XI
0

CD
•4—'

CD

c
ig
'5
XI

N
'c
CO

&

E
1
c
3

XI
CD 1

0
ü

3
Ä _l "Q. CD CO CD i_ 0 u_ e

<

O
h-

Q.
CD

■e
0
.a.

E
0

"co

c
CD

2
O

E
0

■a
■a

_g
CD

■a
c
CO

'5

CD

xi
0

CD

to
OS

1
•4-
O)
o> *^- z

LU
0

"co
0 CD CO

E
XI "co

CD

©

Jw > 2 a) 0

■■■ ^r
ü ro

V o 2
o 0

28

■8
I
55 "<5

«..,. £
TO TO o 1
*Ö
^1 c

■c TO
a. 3:

<D
»*.
TO ^^^
£ TO

3 "O
£ TO > a:

<0
t/>
Q)
O s a.

£
TO

O
<0

X
Q.

i ki L

CM
X
>

CO
X
>

i
E

c .o

.2

X
>

cs a.

O)
o>

E

UOZZU1UI OZlfl

ü

V)

E

2.
CO

3

I

e
£
lO
Cft

I

CO
Y-

©

29

e
ft?

73
0)
•a
CD
0)
c
<A
C8

73
CD
N

"55
0)

c
>»
(A
0)
(0

c
"<Ä

CD
o
o
o 2
E-§~
o CO

(0
c
0)
c

<s|
I?
«-* en
w CO

O ^-

(A

O

<A

C
CD
C
o
Q.

E
o

k. o

r- CO

o e
O

Q. en
(A *-»
c
CD
C
o
QJ

» E

Ä ü
**
B

2>
CO

o

CD

o k.

2
O

Q.
CO

(S CO w

(D Co 5"
2 ra o
> "o -a

CO 0

CO

re co

t
o
0.

<A
c
o

+3
O
CD
C
c
o
Ü

CO
T3

0
CO

♦ ♦

(A

2 «

nE 2 a. Q.

g* w
w
 o O °

(D <A

O 3 J5-
(A

B
cu
s
B

5«

B

B

s
O

Q

Ä E 3 B

n o
re a>
(A

c
o

§1
•4= 3
£3 Ö)

II
o *
<■> a £l (0 ^
£ CO

73 -C
k.

2 re
■= 3

a
■ MM

(A
c
re
o
</)
C
re
E
o
Q
0)
(A
O
O
re

re o
CD re
2 a>
CD £

3
CD v.

O
o
re

CD ■ ■

k. CA
re (A

1 CD
O

M- O o k.
(0 Q.

+■•
a m

CD
■ ■ k.

P re
re S
£ 73

k.
73 re
k.
re
x: re
■■■ o re ■ ^M

3 (0

■■M

>

> Q.

re

73 CD

~ re

re .2
a> Q.

re E
</) ~

c c
0) CD

Q. o

I » O (A
Ü <

i a)
E

.o
■G

.8

I
«
■S
i2
o

1

o

E

2.

Ü

I <s
I
I
lO

I

©

30

IS

to

O O)

E |
© E

<*> ■=
-*-> 3 CD
ÖT3Ö

fi § 5
O 3
Q. CO O

fi co x
© « »

0 CD £
^ .3 CO s *• a
£ ° Ü

1 .E
«s E

£* £>3-
o o o

CD

CO

a
CD
CO

3
0> CO
>» CO
Ö 3

CO
E
CO

Ö)
o "D a o

• *- *- ft fl) Q)
o <o to

o

5«
(0

u
a>
.3
O

I <*
■^ o) p fi o Ü-
O n* (fl

5« ^ 3
ä m "3 3 ™ o
ft ® s
& £ • W 73 r-

o ts

pj

es

a>

cu

Or

P

CO *-"
a
a>
IM

n
o
CD
h.
CO

k.
CO

CO
O

73 "(0
Q) >

73 .3
CD Q.

= ? CO
It: co c
w « 2
a> 5 E co 3 ^

CD :r .2*
o > CO
O a> w
£*= -■

■= ü "■ ** >.
0 CD CD CD *■
+■? c *r! +± T;
CO
CD 3

O
a

4-» +■» M

CO CO S
2 £ a.
O O CO

c
"55
CO
CD
u
o
k.

U 3.

3^
2 S 3
2 E .2

E 1o
o o
a •—

v o) §■ A 3 g-
© 3 fD
*5 73 -3
3 *■* •S 3) *-

fl

o
CD
Q.
CO
3

3

ft 2

U 2 >
< a> o

o S <u

o

CO <D
CO

i
I»
s

I
.8

}
«
JO

03

O)

vT
03

5
S

Ü c

i
2.

a

! o
I
£

I

o>

©

31

©

u
C

o

c
o
CO

= 1

Q. E o
Q. C "^
CO Ö) := ■— 73

+- CO ro

£■ N
E

 o
CO 03 t
C C
co sz:

CD
Q.

0
3

73
O

£
0)
U)
<
73
c
CO
</>
a>
3

"Ö
O

2»
o i2 ss
o J u.

o o o
CO

.£E =

.a 2?
■r; O O
■- > o
■ «MB ^™

O <D c
* to i c i: w jj o j

co O £
<ß </> c/>
Q> <D Q)

■g to ts
£ £ £

73 ü Ü

■ MM

Li.
C
o

■ ■■I

CO
l_
3
D)

.ts s .§
M o

C o

H

O

0

< O

CO 0)

a) a>
w CD

=> 0)
E £

£= .Q
<D -a

g 'S
u (0 o

8 ?l 0)0. g

ES g
.a £ a>

3 ♦ ♦
x
0)

i
CD
E

c
.o

.8

.w c

i2
CD

CD
■O
E

co"
E
•S
2.

CO
V.

•S

I o
Ü

§

I

©

32

CO

•ss
St

O
(/>

u c
3
re

d)

(/)
0)
(A
</>
0) o
o

+■* ■£ Q.

c
Ü re

— (/>

5 w
O O)
ö) g
Q. .£

(A
0)
+■>
3
O
0)
X
d>

c
re

.c o c
3
(8

.* £
O

E
(0 !_

11-

0)

O 0) w
fi B» £

<D
■ §■■

> o

15 °
3 §

E
CO

O

<1>
03
k.
(1)
C
<D

CD
o

<0 <D

3 (/>

o>

(0

§ 8.
< CO

H

(A

(0 ■ MM

E
■ MB

o a
CJ) ^
.Q +-»
OB C

4-1 0
3
O ^0,

CD r X ■■■i

V CO
0) E

+J 0)
^2

o 4-i
+J
c (/)

*^M <D
■Ö T3
0) >
^ o c v.
■ ^H a

o
re -w

0) _
O re

o
a> o

B*2
I

■D
<J>
+■»
CO
d)
L. o
CO

CD
N

(Ö

(0
■D

^ 3

0)

o c
3 b.
(0 <D

o c
** 3

re -1

.Q >
to -o
O 0)

a) 2

C ^

2g
O £

*2
re «
£3
fi
if
</> t:

c
re
(A

re

ü Ö) w

S
E

.8

.8
&

•8
JO

.5

iS

<D
■a
E

u

co"

E
Ä

I
I

IO
I

o>

©

33

^

&
« c a o ■s

ÖJO T3

4-*
03 i

03
E

s C
03

3
TO 1

5S E
IH

c 8

M E
o
o

o
o
c

0
Q.
O

.O

io
n

73

"o
(A o

03 o

a
I

0
_0

c

ig
u
ra

t

0
C
0
TO

■

0)

C

E
E
o
a
c
o

0

T3
C
03
TO

Q.
a
03

4-1
c
CD
L.
k.
3 o

CD

CD

CD

0
■a

0
Q.
O
S..2 *•*

c
3
i_

tf
03
4-i
(A

Q.
s*z. ■ ^M C TO o 3
^>i U (/) ■ HH CD 1 °3 0 <4-> UT

S* ■+■»
c
0 o CD

Q.
+-» Ü
0 tf> c

TO
W
(A
03
0

c 0 0)
■Q

^ 5-
a) X

a>
o £ 0

0
0

™J o # % T3
8
5

U a e

o 4-»
Ü

o
o CD

J
CD
TO

.p
ro

p
er

ty
,

_s
ca

le
,

ge
 u 03

O
S

■3
L.
(0

CD
a.
X
0

>-
0

CD

3
TO
CD
>

0
v.

T3

0~
+•»
03
0

T3

C
TO

u
0
c ^

0" +•»
03

0
•»^

IM
o
03

fi

o

TJ Mi 03 ^3 O *-' *-' "55 c 0 C

is

C 0
CD

E
E
■■M

(A
CD

T3
>
o
Q.

O 0 L. 0 0 </> o 3 0
03
*-•
(A
a)

(A
T3
C
a)
X
0

+J

(/)
cu
*J
re

o
a
o
o
c

03
L.
CD
+J
C

■ MM

(A
t o
a
Q.
3
tf>

a
s
s
o

■o

0

£

o

</>
0
Ü
c

.s p
ro

p
er

ti
es

s
sc

al
in

g

s 03

c
0

c

tf>
03

o

c
.2
Ü
0
c
c
o
o

TO

c .2
03

E
■S

TO

1
C
O
O

E
•a
CO

Ä a
1
0
O

e

C3> u 1

H «< ©

34

«o

« P.

H
o

(0
>
(0
(A

o
o

d)

c

E
3
O
o

■D

a)
>

c
0)

4-1
X
CD

TJ o

5 ST

J3

CD
■ MM

S-

O

(/)
■ MM

X
Q)
+J

,2 Ü2
.a .Q

8 i a, =

a» 2 - n
<D (Q

Q. C
.. a>

j/> _-

w w

Z fc 3 a.
to a)
> >

>
£
a>
>

(0
O
c
o
o
a>
o

(0

a)
u
(0 £ E £

CO „

U <D
£ .

>.£

> Ü

+* H a>

CQ «A. ij*

TL +- «-
2 <D Jtfiit:

x"£
T3 ■D
£ £

1Z a>
V« Q.

G)
a
as

£ 4-1
<D
™2S Q.

n (/)
■D
£ £
(1) IM

a
a.

Ü

CO O)
£

4-» i_ (/) 4-1
HZ (/)

Q.
X
CD

o
a)
x
0

"cÖ
>

_» £ x:
3 O
a) (0
2. o
o" t/f
i. 3 a. a

5 .2 S c o

H

(0 o s
(Q O <0 «3 3
^ O i5 to *C

0)
E

c .o
■♦3

.8

I
•8
(D

.2
CD

o>

1
2

Ü

CO

E

s.
to

3

I
O
Ü

b
I
lO
O)

I
■>*

O)

©

35

5S

3
£

*Sv

CD
C

■H
rH
</>
P
^

CD
C

-H
rH
</>
JZ
P
Oi
C

£ CD
C !-{

CD Oi
P c
ro ■rH LT)

■o n CTl ,
</>

c
-

p
CO

CD
rH

CD

CD
C

-H •
CD ^ ~-^ P rH E-t C rH CD
p rö ^ ■H Q •H C

1—I rö P i—. CD M 4H Cd rH M -H
CD Q m T3 C CD 1 CD rH

rH C Q M •H XI SH CD r- P J5
•H ^-

P CD rH e CD rH CD <=r r0 CO P P
4H CD s* rH 3 XI Q* rH • • P U O CO </> rH X ■H T3 2 g e •H IT) (0 •H C rrj

•H P CM M CD D rö 4H LO a txj < t-1
r^ W- C i-H 4H Cn<o- 0 C s CO 1 • •
Q) CD </> C rH ■H CD I CD CN
p > a M CD 4-1 •H rH a re) rH rH
tO tji o CD • • r-} O 4H </> •H \ a

TS H — XI CD P CD </> : rH a s O X
(0 e rH ^ 1—' CD e ro rH P

üwU D •H CD co co U rH p co en
CD M 2 Cxj C — p P O •H \ 1 Q, C
x CD CD CD C ■H CD 3 C 4H (0 CD CD rH ro o
(U HH C ^^ ►J ^-^ Cn a -H <0- CD \ C/3 J rH rH rH

•—' -H -H •H = E rH tx
4H 4-1 r-H CD CD •H e c

(1) co co rH CO 4H p 3
P X! P 4-) P P •H O 1 ^ c/3
ro ü a; CD 3 P X rH p

TS to co CO a a 3 ^ U co .. • •
a) -H CD CD CD

-P u rH rH P C
CD o •H r0 ■H
CO 4-1 -~- o\° tx4 Q J rH CN 00

i
ID

6

c
.9
13 .u

I
•8
to

CD

m
OJ
O)

01 -a
E

ü

Hi
s
Ä
2.

CO

.2
3

I
b 3

I
I

ri-
eft
o>

©

36

5-
«S
Gfl

a

o

u
V

C3

5«

o

e

X!
e

O S3 .

Is
O <u
Q en

8 '
-2
13

u
c
>

S
a)

C/3

tu

► O

<W u
M CU

#g

G
"^ rH

£^ U

S3 *

S " *" co

S3 £
G .5

i
CO
E

c .g

1 I
■8
<0

i5

o>

0)
•Q
E

5

c

3

Ü

e

I

O)

©

37

c 0
0 •H

•H 4-1
4-1 c U
u o CD
CD -H C c C
C 4-> G C o O
C U O O •H •H C
O CD -H U 4-1 4-1 C O c
U C 4J 1 U O c o •H o

C Ü CD CD CD c c o •H 4-) -H
CD 0 CD (-4 C C 0 C o -H 4-1 Ü 4J
U U C c O C c •H 0 •H 4-> U CD Ü
0 1 C o x O o 4-1 ■H ■P U 0 C CD
x 4-> 0 •H a u CJ Ü 4J Ü CD c C C
a CD U 4-1 (0 1 1 0 Ü CD C c 0 C
(0 ■* u s= er X3 C CD C C o u 0

c S u x CD CD CO e c C C 0 u CJ
0 a) o e C CO s CO 0 C O U 1 u

•H CO CO CO C 1 1 u O U CD CD CD
4-1 1 1 1 0 X X X IU |4-> <-i 4-1 iH
U CO CO CO U ■H •iH •H > Cn to X) C TS
CD o o o 1 CO co CO Cn > c o D ■H C
C u u u X O O o H c o iH O o (0
C
o
u

s 2 S a OJ Cu cu < CJ J CM Q CU 3C

00

i
«I
E

c
,Q

s
I
c

iS

c
-H
O U
a CD CD CD

T5 4-1 iH 4-1 ■-I
4-> / c > Cn no X! C TJ CD
u / b U X! CJ Cn > C O D -H C rH
CD 4J CD

CO
O

CO
B

CO
X
Q <

c o
r-4"

rH
tu

O
Q

O
a.

CO ■rH
•n , i-l UJ

-Q \ 0
o \ Qj

a>

E
s

Ü c

S
CO
S-l
Cn
O
U CD CJ

OJ U CC C)
e M M < OS
(0 C 3 c S o < C)

4-J r4 •H Ü -H co C; Q ^O sc CU
C CD Cn CO CO CO co CO Pu tn CD CO Qj
CD rH Ü s CD M CO <
C 3 M CO CO u CC a DC CJ CJ CJ
O ■o OJ 4-1 4-J o IU o C)
a Ü CO CO i-l CJ CJ CJ CJ
B s a a CU o o u u
o
u

I

3

I
cS

I
o>

I
•*>■

o>
T-

©

38

OS

Ö

^a A

V
(/I

1
A
on "O u V CD <y

o u O 1
fi ,H ■H p

<-t 'G i-H a W)
fl

CD o
s-i IK

o c« u—i 5«

o c«

ob
j

o
g
r

o
1X1
00

1 42

</3 a. « u Ö
V CJ c« ^

3 co

5« CD
P
to

CD
P
m c*2

a

'S 2 2 ü
0)
u
o

U
Ü

p
a)
co

&
• ^MM

Ä
O

CS V «

U

's» o

d
•H

I
p.
co

TS
CO
S-i

to
CD
r-l

m
x
a)

0
.H
-H

i
A

P C

a v
c P
M
P
CO

TS
cö

a
c

nfl C
U M
Cn P
O co
S-i TS

P-i (0

CD
S-l
(0

r-'
CM

CQ
2 X!
>X> -rH
<-| CD

Ü
>1 I
S-l
O A
6 C
a; </>
E v
i CD

u
cu co
O M-l
fO P

4-i CD CD

S-l P o
c co

•H M-l
S-l

a) CD
Ü 4->

fO CO C
TS <H -H
CO S-l
a: o) o

P p
O C I
l£> IH
00 P P

CO

CD
p

.-H CO
u o
a)

T3
S-l
u

CD
p
c

u -a cu
u co c

PS -H
0)
s-i a) c
CO P CTi
H Ifl -H
ü CD CO
CD P co

TS Ü CO

i
E

c
.g

1
I
■8 TO
i5
0)
iS

o>

■a
E

(0
E

S.
co

3

I
O
Ü

e

lO
O)

I
^f
o>
o>

©

39

st

ft,

X
sj

.5
8

•8

a »
§ .E
* SR w

Q.
o
(D

0)
3
CO
>

m a**

0) es ® 5 ° -

S3 -ö >
a s 5
W m ■—

•- S C 0X1
 £ ",« o t co

* = E

a <ü 3
SCO

• • i <—
<ü = ü

o

<D
■n 3 a>

<D <D 2
C <0 £

.5» >» c
w 12 ° <I> w .«

■o 2-8
.8« g *- 2 a
Ore»
3 I «
— c *-
>I0 c
±i £ <D
« o 3

3 c <D
c c co
I ü ■§
aS: S

o
X!
S
co

-p

o
X!
g

CO

X
+J

o

CO

C
-H

X!
B

co

X
ß

■H

o

i
E

c
.o

.8
§:

■t
.*> c
■S
ff

iS

0)
■Q
E

u

to"
E

2. w

I o
O

I
IO
O)

I

■«J-

o>

©

40

*>

^»
CM

■s
i o
E

(/) CJ iP k. c u_
o
o
0)
>

+3
(0
k.
0)
Q.

c .o
to

1
k. O ■s o

<D
<0

l"3

ja> >
1—

O) "«3 £ c re
■ ■■I c
(/)

<D 1
1

+mt nT

-1
O

r o
Q.

■ MM

re

■
*

a)
>

<
c

■ MM

O
+■»

0)
.a
re

-1
X

re
«*-
■MM

1MM

o
k.
re Ü5

"U s (/) "D m 1
3

(1)
■ MBI

k.

o
Q.

3 r o a a
3

a> 3
■ MM

Ü
(/)
(1)

k. o
Ü
0)
1.

re
™
re

o
re

(/)
"C O ^ fi (/> > a

c o
<£ (A

u 0 v.
o k.

a> re .a o
>»

IM

c
CD

O
3

4-i

*-•
d)

E

re

k.
o

75
e
o

u

P
*© > (0 0) <U v. *-

■ MM 1 c o o
G)

c

"55
c

re
(0 a
c

'S
E
re
k.

0.
<

E
0)

s
'S

O

Ü
c

■ MM
4-1 c

o
0)
(/)
3

a o
2.

CO

1 c c o o re E C re "5 ■MM

o
o

QJ — ■ MM ■ ■Mi Q. 0) • PN 0) ki a. b

'S
CO o
Ü

o c
3

«4-

o c
3 o a. 'S

■ MM

k.
3
0)
0)
k.

a>
v.
re
o

E o a

3

o o
§ s ©

41

•3»
■3

* -X -X

^H >i
>^ rH

^T: CO

^^ 3
0

«
3
C

•H p

.8? P
3
0

P
C
O
U

-H

3
O

X)

o
•*»i o i—1 •

S P
3
o

p

CD
Ü

-H
>
CD

ro
o

o
P

X,

p
3
O

£

p
3
a
C

•rH

CD

"^
£

1
X)

X
p

o
■X

C/D rH
-H
4-1 s E-i o

P
3
O ^ p

3
1

«
V

X
p
3

4H

P
3

CD
P

C
M
CD

p
3

C

Sf> en
O

6
a
c

-H

O

a
o
p

ro
p

-H

P s o ■H
P

CD
u

ro 3 Du 3

^

■ ro
.H
(0
-P

1
EH

CD
4-1

CO
C

CD
to

CD
o

c
•H

1
CD

CD
rH
3

T5 0

c
H

CD

g

rs C
■*"| 0

P
3

ro
P
P

>
•H
tn

c
P
3

E
ro
S-l

O

(0
ro
p

Du r \ (D ■a a P *p CD (A ^j E 3 c * * CD P 3 CD ^■^ -H •H \ ~\ P C
o

■ MM

J5

ü ro P

2 u
c -p

c
•H —

i

ü
u

C
O u

CD
T3

C
o

ro
CD
p
u

'6 Q. re ■ ^H ■ ■■■ o o Q. i_

3 E O
(0 Q.

O o 0) a
CO ü Q <

(M

i
CD
E

c
.Q

.*»
C

i5

IB
■Q
E

o .£
w"
E
•S

CO
l~

•S
3

I
O
O

I*
IO
O)
•4
O)

©

CN

42

3
o

c
(A

§ S
(/>

C Q
D o o

O «5 d)

fl T3 =
§ O <0

II w I _ *- o
a 3 s
cs </> ca

el*
^ I g
* £ <D
V < ts
3

o

+■*
W

a>
G)
U)
3

-Q
a)
•a
o u
V.
3
O
(ft

•a

o
V) o
Q.

"^ Q>
O (0

s«
L. O
£ -° *" E
® >*

° it

a> (A
.c a>
*" E
o *°

°- £ o .2 o «s

si o £

3

o

0)

o
c
3
(0

_J
o a

T3
"2 -w

'S °
<D o

2 o,75
© T3

c
0)
O

a o

a) w S

Ü
(0
0)

O -D
O

u
(0

- « «> u. a> s

!!<! o c^ w -o
M .= £ c
ä <2 a) *
+- fc 0) </)

ü JO ° w

-c
H

= 75 £ 5 §
"3 ^ c

2 S w

£ © N
(0 ■*•* c

o (A Q.
ä) 3 JZ
(0 (/) o
<i) *J c
h. 0> >% o 0) (A

CO
eg

i
E

c
o

.8

<*

■S

a>

o>

E

u

E
Ä

3

O
O

O)

43

t/5
CM

08
PN

61)
O
i-

O 0H

T3
73 CJ
CJi •^

CM 08
iH p-i
IT) CJ
a
i

a
CJ

CM o a
73

1
t-H

08
PN

73

C/2
CJ s

CJ
>
Oi

73
CJ 08

3
08

S-J
(0

1

CD
Ü

1

-p

a
0) B

08
** C >i P s u P-I

CJ
CJ a

co
-H

3

P
a
o

o
l

o
CD

73

PC 6JD
o
p*

PH
PM

CJ
cz>

6X

**

ä
c8

WD

73

g
(0
S-l

o

1
o
0)

•H
>

-H
>

O
P

1

PQ

• PN

t/3
• PN

CJ
CJ
i-

G«
G«

08

O
>*

S-l

1
c

■H

u
C/3
(H
a;

1
Cd
CJ

>i
rd

CO
•rH

-o

PC
CJ

=
08

• PN

E
s

08 T3 Q) CD C :-l CJ
SZ2 CJ p P Cn CJ «♦H

s
08 u

9
CO
a)

to
a)

•H
CO PC o

u u
co
CO

WD
o

•P*

T3
o

•P*

P-H

CJ
V5

Gfl
• PN

CJ 08
CJ

• pp

"ft u 73
c ON

p ^ <

i a)
£

c
,o

I
■s
CD

OS

S
S

O

E
Ä
2.

co

3

I
O
Ü

3
e
I
a>

i

Cft
o>

©

44

10
CM

•
•
• i

?a
^ 1
^ </)

c
.0

i 4-» a
■ MM

k.
o
Cfl

.8
§:

.*> c
(0

^> (A 2
^

o 0
iS

*>
•a
a>
o
i_
o

**-

o
c
(A

■ MM

o

c

F
o
rD

(0

E
a>

■3
o
o
a
3

4-»
Ü
(0

4-1
c
w

RMH

(A

Q.
<

E

o
■ MM

to
o

■ MM

Q. a
CO

4-1
Ü

"3
0)
k.
O

'co

0)

0
c
3
CO
-I

£
CD
>

(A
O
O

4-»
4-*

. £
CD

E
CD
3)
CO
£

10

0)

£
3>

"5>
a)

■3
c

(0 o CO *J ■ MM

k. 1
(A

(A
<A
0)

1

o
k.
Q.
Q.
(0

o
+J
(/>
>»
(A
Q)
>

4-»

■a
CD
"3
■3
CO

a
E

■ MM

CD
O
c

en
CD

.Q
CO
4-*
3
a
a
X

(A
O
O

"3
1

CO
4-«
CO

■3

CO

CO

E
£
O

■ MM

4-1

§
£

<A
o

■ Ml

4-»
(0

3
■3
o

4M
cs
E

(A
■ MM

a>

CO

E
k.

4-»

3)
E

>
n

CO
k.
3
3)
i£
£
O
O

■*->
■ MM

(A

k.
O

cj
CO a
3)
c

• MM

>
o
£
k.
<D

$

Li.

Q. a
CO

"cÖ
b.
3
+■*
(0
c
a)

1-

a)
+J
«4-

o
c
o

U3
a
o
■a
<

CD
<A
3

C
co
o
(A

3
■3
O

"3
o
o

T3
<D
+J
CO
k.
a>
£
CD
3)

O
z

o
t

CD a
CD

E
"•3
C
3
k.

O
z

CD

"3
CD

CO
k.
CD
c
0)
3)

O
CO
ill

4J
(A

■ 1MB

X
CD

4-*
■ MM

3)
3

JD
CD
Q

"3
£
3
O
k.
CO
£
k.
3

4-»

O

3 a

5
co"
E
.2

CO
1.

Ä
3

1
0
O

- \ •4
*%-%.?,, 0

0»
"%%, T-

©

45

CM

!^4

Ö

ß
^

§

c
0)
E
a
o </>
0) 3
> a
0

T3 ■s
c

Ö ö)

+J
O a)

_3
"55
0) c C T3 o

E o
(0
>

C c ■c (0 "D o o
o

>_ (D ■ ■■■

> c
>

■n
•a
(0

ns
o

■ MM

(0
0) "ä>

Q.
Q.

k. x: o (0
<0

■ Mi

E
(A

4-i

c
o

a)
3

,5" o (0 O (/) "c (/) a) O 3 3
E
d)

4-*

•a
a

hi—

a>
>

U
o

BHM

</> ■ M o c Q.
>> o (0 0
(A 0) (/) o O

C
o

■ ■■■

Q.
■
E
a>

(A

E

a.

12
a.
o
a)

C
(0 o

1 a> > o o
o b. Q. ■c +J

o a>
5

■ MM

3 Ö Ü
*■ a> o (0
< u. § 1- LU

i
CO
E

c .o

.8

I
■8
JO

46

>»*

c
g

"-4—»

co
. 3

= c o
CO ü

El
to °
>> £*

+■•
3
Q.

E o
ü

3
O

CO
0)

TJ
O
E
0)
.Q

0) JXj
(0 tO

CO to
en CD
c "-
b) £»

CD
CO
CO

-D
CO

-i—>
CO

TJ
_l
Ü
< CO

CD "£

5 §
CD ti o v
co •*-
t: -c
o " ■*-■ c

ö J3

(D

S w
- P ü CL
<ü TJ
Q. CD ws
-I (0
Ü
<

CO
c
g

'-§—»

o

12 o ^
o jo
co" p

li
C 3
O) -Q
W 2>

»*- <1>
O N

o E
TJ -^
C Q.
3 O

CD
CJ)
(0
3
O)
c
CO
_l
c »
o o
2 o
3 O

c o
o o
O co

CO
_CD
(D

O
c

CO
CO o

' CO

CO o
CD -£ -JÜ CO

3= CD
^ CD
TJ <D
C -C
to "~

.2 -I
•C 3
CD O)
Q. «=
o 5
0. ü

co
TJ
c
to ü
E c

o o

CO
c
g

'■*-'

o
CD
c
c
o
o
O) c
[>
o
CO
CD

O "-
E TJ
Ü c
CD CO

E ^
CD •■•=

•*-■ c
« 0

c
g

'-<—>
CO
N

"to
c

CD
E
to
c

■e o
0.

(0
X
(1)

co a)
Q> Jfc- _

c ^ 2 o o 2
<o <D "<3

5 ■ J*
»^ CD

ISA

■ts c Q
£ E ,
2 c * O C +?

■^ L. CD
■* Ö) Q.
I- O X

1 -^
(0 ü

73 2

LU

c
■ MM

o
X

111

3

I
b
3
e

o>
I

©

47

Appendix B.

Talaris applied to Peakware product

(Mercury product announcement)

48

CanpuierS^stems, Ine

PeakWare
for RACE

MEPSgfßRY
\i *y

—r-r- ... ' •*. i

rn^iH- :«ia
PeAkWare

jzjfäffi.

The (Component Programming Development
Environment for Embedded Applications

Create Deployable
Application Code
for Embedded
Multicomputer Systems

Reduce Software
Application
Life-Cycle Cost

Comprehensive,
Component-Based
Development Environment

PeakWare for RACE, by Mercury

Computer Systems, Inc., refines the

concept of stream computing by

applying to it the most productive

application development interface in

the industry. It is a fully graphical tool

for designing and deploying applica-

tions for the RACE multicomputing envi-

ronment. PeakWare for RACE employs a

building-block process that provides a log-

ical, intuitive development environment

familiar to anyone who has ever sketched

out a system design on a white board.

With PeakWare for RACE, programmers

can develop signal processing applications

without having to rewrite existing, proven

algorithms, and configure hardware com-

ponents without worrying about whether

different processors will communicate with

the software. PeakWare for RACE's visual

representation of application data flow lets

users access distinct software domains,

hardware configurations, and mapping of

software modules to hardware modules

through simple, efficient graphical repre-

sentations. Using PeakWare for RACE,

programmers can change hardware

resources and configurations without having

to rewrite source code. With its simple

point-and-click functionality, code is generat-

ed, applications are created, and easy-to-fol-

low graphical documentation gets produced.

PeakWare for RACE

An intuitive graphical user interface (GUI)

enables application developers to depict

software modules and the intended connec-

tion between the modules and target

processors. PeakWare for RACE allows

the user to easily map software modules to

target hardware, providing an unprecedent-

ed level of productivity and portability

without hampering performance.

Productivity

With PeakWare for RACE, software and

hardware domains remain uniformly dis-

tinct, allowing different hardware configu-

rations to be used without requiring

changes to the source code. With software

components that are wholly independent

of the hardware configuration, due to

M ace«

Define Hardware

49

automatic source code generation for configuration-

dependent communications code, application developers

can seamlessly upgrade processors or insert new technology.

Engineering productivity is dramatically improved, and

time-to-market is substantially reduced as developers can

spend less time rewriting code and more time streamlining

a system for optimal performance.

PeakWare for RACE contains extensive turnkey code

libraries, and also allows developers to easily incorporate

their own code, either in source code format or through

a feature called Opaque Modules in compiled (object)

format. Because this innovative tool keeps functional

code separate from platform-specific code, it facilitates

software reuse.

Portability

PeakWare for RACE allows developers to use different

hardware maps for any combination of processors that

may already exist within a RACE multicomputer system.

Furthermore, application code can be targeted at differ-

ent system and backplane architectures. With PeakWare

for RACE'S ability to mix high-performance processors

such as the PowerPC™, SHARC®, and i860 in heteroge-

neous multicomputer configurations, developers can test

how well their individual algorithms, as well as complete

applications, work in each case in order to create the

optimal performance match.

Performance

PeakWare for RACE was created from the ground up to

reduce development costs and time-to-market, and is the

only development tool that generates full-performance,

production-ready, deployable code that is ready to run on

targeted configurations. Speed, accuracy, and ease of use

have been key criteria for this tool every step of the way,

making PeakWare for RACE a true competitive advantage.

With PeakWare for RACE, a developer graphically

creates an application in three parts. The first element,

software design, allows the developer to define the inter-

connection of software components. In the next phase,

the RACE system hardware configuration is graphically

defined. Finally, the developer maps the interconnection

design to the target hardware platform.

Software Design

For pure software design, developers use the PeakWare

for RACE GUI to establish data-flow communications

hWSi

üj_-=jj i,SSS«E&ä

\\.M "Hi

|g#ll%5feg

fei»?. " fc2*.r:.':!J

*»-;~e»...ä "J-

between various software modules and their related proto-

cols. The software graph enables programmers to create a

graphical representation of the application they are devel-

oping. Programmers have access to six main graphical

operations: selecting the design options, inserting the mod-

ule component in the graph, defining the module contents,

inserting the function in the module graph, defining the

function, and saving the software graph.

The software graph handles only information about soft-

ware processes and communication declarations. For the

software part of the specification, the developer needs

minimal knowledge of the target hardware.

Because the software graph's basic building block is a

function, users can either create their own functions or

manipulate those provided with PeakWare for RACE.

Either can be retrieved from libraries within the application.

Another key component in the software design is a mod-

ule. A module is always implemented as a process or a

thread (task) and is composed of a function or a set of

functions. PeakWare for RACE offers a graphical module

50

editor to describe the internal structure of modules, func-

tions, and data exchanged between functions. At this

level, the application developer can interconnect modules

either directly or using a connection such as shared memo-

ry buffers, sockets, or semaphores.

PeakWare for RACE allows an application developer to

easily create modules and their links. The ports by which

a module interconnects to other modules are defined using

the GUI to select a port type from those types supported

(e.g., shared memory with DMA access, or socket, etc.).

Each software graphical object (module, connection, or

function) has a description window, depending on the object

type, which lets the developer override default settings.

The application developer can also edit graphical objects

and move through the software module's hierarchy.

PeakWare for RACE provides Top, Down, and Up but-

tons and navigation menu options as well as a hierarchy

display window for users to navigate through the module's

hierarchy and contents.

A scaling factor can be applied to software modules and

other graphical objects to generate a specific number of

fully intercommunicating and synchronized source code

instantiations. For example, scaling a module to 32

results in source code generation for communication and

synchronization of the 32 instances of the module.

Regardless of the amount of scaling, the code structure of

the module is compiled once in PeakWare for RACE'S

library. A software description field gives programmers a

place to define custom functions or annotate PeakWare

for RACE functions.

■';■;■.," PMtVtt» for MCI - M»r**»r* Oe«ri*n» ^

Hardware
In keeping with the ease of component programming,

PeakWare for RACE gives developers six main functions

for GUI-based hardware system definition: creating the

graph components, defining the hardware configurations,

defining the data links, linking the components, specifying

the application host or the targeted hardware, and saving

the hardware graph. With these functions, application

developers graphically describe the RACE multicomputer

configuration that is available or needed to accommodate

the real-time performance requirements of the application

software.

The target configuration can be graphically displayed,

modified (e.g., adding a hardware board), or created from

elementary, predefined hardware components, such as

specific boards (RACE family of high-end signal process-

ing boards or SPARC Unix host boards) and interconnects

(RACEway crossbar or VMEbus). PeakWare for RACE'S

turnkey library of hardware components ranges from the

simple to the complex. In addition, developers can add

their own graphically defined hardware configurations to

the library. Furthermore, PeakWare for RACE gives pro-

grammers a simple, flexible, and efficient way to test

hardware components by allowing changes in hardware

configurations — even adding or subtracting processors —

without rewriting or editing source code.

Mapping

Once the software and hardware are defined, the devel-

oper can control the way the application is mapped onto

the target hardware. This allows the developer to

K
!*#*• fine-tune the system's performance. The block

■. .y{:*:.::<*t-rv

'h I 1
«Of-;

5553K« . -.•»— «i "til I ,-,-J I— ■- ■■»jJOTggj^BIl m iil..*i."S|.;

f «BSP*
1 v- - MSMmmmBBSam *_' i • mfflfflmm i *
1 -•■£.! v-.«.-; mSmfflKsm&mm iBlp
rar—™ _i—«~- «ai2iäiii

——™ „„_

SI
i-iffSS.'Vilj'i

S3 UMTK Vi"7 . *)'ij»ft' *'«i i

<MnniimBi5iiHii Umä\U m I

S*SS»

51

diagram, data-flow design metaphor extends to PeakWare

for RACE's mapping capabilities, allowing users to assign

particular software modules to specific processors or other

pieces of hardware. The developer can map modules onto

processors with the Mapping operation, and produce

information that is then used by the Code Generator.

Each module results in a thread at run time. With the

Mapping window, the developer can override the default

mapping of modules (threads) into processes, or the

default mapping of virtual hardware onto physical proces-

sors. A single software module may be assigned to one

or more processors, or many software modules to one

processor. This feature encourages the programmer to

focus on streamlining for deployable application perfor-

mance, and eliminates the worry of software and hard-

ware communication.

In Partnership

PeakWare for RACE is the result of collaboration

between Mercury Computer Systems and MATRA

SYSTEMES & INFORMATION (Matra MS&I), a

France-based industry leader in the development and inte-

gration of high-performance computing solutions.

System Requirements

Development Host

• SPARC system running Solaris™ 2.4 or 2.5

• Must have X display terminal capability

(color recommended)

• 75 MB for complete on-line help with screen dumps

• 16 MB memory minimum (32 MB recommended)

Runtime Host

• Any Mercury-supported runtime host

Mercury Hardware/Software

• MC/OS Development and Runtime Environment

Version 4.3 and later

• SHARC-, PowerPC-, or i860-based system with

minimum 8 MB memory per node

Shipping Media

• 1/4 inch QIC-150 tape, pkgadd format

• 8 mm tape, pkgadd format

MATRA©
W«l3.',l»f*IJIM:WJIMg

j> m Computer Systems, Inc.

MERQJRY
The Ultimate Performance Machine

199 Rlvemeck Road
Chelmsford, MA 01824-2820 U.S.A.
978-256-1300 • Fax 978-256-3599
800-229-2006 • http://www.nic.cxim

RACE and the RACE logo are registered trademarks, and MC/OS and Talaris are trademarks of Mercury Computer Systems, NASDAQ- MRCY
Inc. PeakWare is a trademark of MATRA SYSTEMS & INFORMATION, PowerPC is a trademark of IBM Corp., and SHARC is
a registered trademark of Analog Devices Inc. Other products mentioned may be trademarks or registered trademarks of
their respective holders. Mercury believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to
change without notice. Copyright© 1998 Mercury Computer Systems, Inc. DS-5U-10

52

Appendix C.

Further product developments towards

MATLAB use

(Mercury product announcement)

53

Qxnpui^^tsms,lna

Easily Deploy MATLAB
Designs to Embedded,
Multi-Node Computing
Systems

Automatically Convert
M-Files to C Code for
RACE Systems

Increase Overall
Developer Productivity

RACE® MATLAB®
Math Library

ML ace.

Developers of demanding sig-

nal processing applications

often face the challenge of

implementing a prototype

from software which origi-

nated during the research

of an idea or concept.

For many organizations,

"the migration of these new

ideas to real-time proof-of-concept repre-

sents the bridging of two vastly different

worlds of users, systems, and software

methodologies.

The RACE MATLAB Math Library

enables M-file programs developed in

The MathWorks' powerful MATLAB

environment to be rapidly targeted to

RACE i860 and PowerPC™ embedded

computer systems.

Developed by Mercury Computer

Systems, a producer of high-performance

embedded multicomputing systems, and

The MathWorks, a developer of high-

performance numeric computation soft-

ware, the RACE MATLAB Math Library

consists of the RACE Embedded

MATLAB Math Library and the RACE

Development MATLAB Math Library.

In conjunction with The MathWorks'

MATLAB Compiler, the embedded library

allows application execution on the i860-

and PowerPC-based RACE systems, and

the development library provides single-

precision, MATLAB-compiled M-file exe-

cution on Sun™ Solaris™ workstations.

Mercury's unique RACE MATLAB Math

Library offers a new way to reduce time-

to-prototype for high-performance digital

signal processing projects. It can eliminate

from weeks to months off project develop-

ment schedules, and eases the task of

going from workstation-based research to

a real-time, high-performance embedded

solution.

• The RACE Embedded MATLAB Math

Library allows MATLAB M-files to be

compiled and executed on multiproces-

sor RACE Series i860 and PowerPC

compute nodes. This eliminates the

need to manually convert M-files to

C code.

• Once a MATLAB application is imple-

mented on the RACE system, life-cycle

support and functional evolution is

greatly facilitated. In the past, it was

not possible to avoid the costly and

unmanageable practice of having two

divergent code bases — one for the

researcher and one for the developer —

as code refinements and newer ideas

emerge from actual prototype data. By

using MATLAB as a "common

language," researchers work with

development engineers on the real-time

system, saving significant time for fast-

evolving programs.

54

• Real-time implementations often require single-preci-

sion math. Until now, there was no way to use

MATLAB, which is a double-precision tool, to effec-

tively test the effect of reducing precision. The effects

of precision can force different algorithm strategies,

causing delays in obtaining a prototype system. The

RACE MATLAB Math Library minimizes recoding for

real-time prototyping and reveals effects of single-

precision at the research phase through the use of the

RACE MATLAB Development Math Library.

• When used with multicomputing techniques, the

RACE MATLAB Math Library provides a higher-per-

formance platform to accelerate MATLAB project eval-

uation. While workstation implementations are limited

by the performance of a single workstation, the RACE

MATLAB Math Library provides for multiple proces-

sor implementations.

Targeting MATLAB M-Filcs to the
RACE Multicomputer

When used in conjunction with the MATLAB Compiler,

the RACE Embedded MATLAB Math Library allows

MATLAB M-files to compile

for a RACE i860 or

PowerPC compute environ-

ment. The resulting exe-

cutable is single-threaded.

The RACE MATLAB Math

Library is intended for early

prototype systems transition-

ing from research to deploy-

ment. Improved perfor-

mance over workstations is

accomplished through a

multicomputer implementa-

tion. When moving from

prototype to deployment,

performance-critical regions

may be tuned by directly uti-

lizing Mercury's optimized

Scientific Algorithm Library

User added
RACE

I PC calls

(SAL) or by recoding to other processors such as the

SHARC® DSP.

Assuming that a "monolithic" M-file exists for an appli-

cation, the following steps are required to implement a

RACE multicomputer MATLAB program:

1. A multicomputing strategy is developed for partition-

ing processing across multiple processors.

2. Using the partitioning strategy as a guide, the mono-

lithic M-file is carefully studied and re-implemented in

MATLAB as multiple separate M-files that each represent

a piece of useful processing.

3. Each M-file is compiled with the MATLAB Compiler

to create a MATLAB "component" which is a C callable

function. For purposes of the programming model, the

developer can essentially think of these MATLAB compo-

nents as their own C callable SAL-like functions.

4. To achieve a multicomputer application, the developer

must implement the interprocess communication (IPC) to

User-Written |
MATLAB Function p

function, m fc.

MATLAB Compiler

j. "d2fpt":
(changes

double
to float)

rUseiCodei:;| C Code File
§ümaimm$ü 1 function.c

others

MATLAB S
C Math |
Library jS
matlab.h %

libmatlb.lib fc

System Compiler and Linker

RACE MATLAB
Math Library

matlab.h
libmatlb.lib

replaces MATLAB C
Math Library

provide data movement and synchronization to logically

interconnect these MATLAB components. For RACE

multicomputers, there are several choices for IPC, includ-

ing shared memory buffers with semaphores and

Mercury's Parallel Application System (PAS™).

The PAS application comprises a high-performance set of

libraries which forms a complete programming environ-

ment for developing parallel applications in a distributed

memory multicomputer system while maintaining maxi-

mum hardware performance.

5. The application code is compiled and linked against

required libraries, one of which is the RACE Embedded

MATLAB Math Library, to create executables. The choice

of i860 or PowerPC, and single or double precision is

made here by selecting the desired compiler and library

names. Launching and debugging of the application is

accomplished using standard RACE development tools

for C applications (see "Space-Time Adaptive Processing

Using the RACE® MATLAB® Math Library," AN-5C-10).

The MATLAB M-files on RACE are subject to the limi-

tations of the MATLAB Compiler, such as the inability to

display graphics. Typically, output data is sent to the

development workstation or written to disk and displayed

with MATLAB executing on the workstation.

RACE MATLAB Math Library
Product Description

The RACE Embedded MATLAB Math Library consists

of a user's guide, detailed code examples, help-line sup-

port, and four libraries each for the i860 and PowerPC.

The RACE Development MATLAB Math Library consists

of two libraries for the Sun SPARC® workstation.

NOTE: Due to processor architecture differences, dou-

ble-precision results may not match exactly between the

workstation, and i860 and PowerPC compute nodes. The

embedded optimized library vectorizes MATLAB routines

with routines from Mercury's SAL for higher performance.

Since algorithm implementation methods can impact pre-

cision, both optimized and non-optimized libraries are

available to detect such influences.

RACE MATLAB Math Library
Prod net Exain.pl e

To illustrate the power of the RACE MATLAB Math

Library, a fully documented example of space-time adap-

tive processing (STAP) radar is included in the product

(see "Space-Time Adaptive Processing Using the RACE®

MATLAB® Math Library," AN-5C-10).

The original STAP M-file applies mathematical computa-

tions to radar data for ultimate target detection. Hand-

coded C routines distribute the processing among multiple

processors on the RACE target system by applying a PAS

multiprocessor master/slave model. The STAP Application

Example (see page 4) shows a graphical model of this

multicomputing adoption of a linear mathematical

MATLAB application.

MATLAB is a powerful tool for application development

in defense signal processing and diagnostic medical image

reconstruction. With the RACE MATLAB Math Library,

researchers and development engineers can speed the tran-

sition from the "drawing board" to the "product shelf."

WTa pJilil

RACE MATLAB
Math Library Support Embedded Development

Single-Precision X X
Double-Precision X X
Vectorized Single-Precision X
Vectorized Double-Precision X

Original
M-File

stap.m

Decompose
Application

Null
Jammer"

Partition
M-File into
Composer

jan jll.m

mmi*

BeamformesM

f Dopplet*:
Processing >

• • Detects?^
rlargeteä^:

report.i

Determine Add
Parallelization Interprocess

Structure Communication

Virtual
Processor 1

Assign to
Processor

PPC CE 1

beamform.m

doppler.m

detect.m

jamnull.m

■mmmmmm

'■■. Virtual*».-; j
rProces3tm2Sm

Use
PAS to

distribute
data

Each Processor
gets 20 Azimuths

beamform;ms#

doppler.n»s*

detect.m

PPeCE:22|^PPC^E3Ä|, PPC*CE 4

beamform'jj beamformij beamformi

doppler|f doppler« | ■ doppler»

'detects*'-

■- jtffcnfrr]\.n^ MMdL»

Use
Shared

Memory
for result PPC CE 5

STAP Application Example

Order Information, for RACE MC/OS™ Version 4.x*
Item

Vl.1.0 Bundled - RACE MATLAB Math Library'1'

Vl.1.0 Embedded • RACE MATLAB Embedded Math Library

Vl.1.0 Development - RACE MATLAB Development Math Library'2'

I1' Includes both Embedded and Development Library

I2' Requires purchase of Embedded Library

•The RACE MATLAB Math Library is supported on MC/OS v4.2 and later

Compatibility with MATLAB Products
Vl.1.0 MATLAB 5.2/1.2i860, PowerPC available now, SHARC n/a

Part Number

8KW7103

810-07101

81(M)7102

MATLAS

H M ComputerSystems, Inc.

MERQJRY
The Ultimate Performance Machine

*U.S. GOVERNMENT PRINTING OFFICE: 1999-310-079-81212
199 Rlvemeck Road
Chelmsford, MA 01824-2820 U.S.A.
978-256-1300 • Fax 978-256-3599
800-229-2006 • http://www.mc.com
NASDAQ: MRCY

PARTNER
The MathWorks Inc. is the leading developer and supplier of technical computing software worldwide. More than 400,000
technical professionals, educators, and students in more than 100 countries use The MathWorks' MATLAB® interactive
computational language, math, and visualization tool. Founded in 1984, The MathWorks is a privately held company located
in Natick, Massachusetts.
RACE and the RACE logo are registered trademarks, and MC/OS and PAS are trademarks of Mercury Computer Systems,
Inc MATLAB is a registered trademark of The MathWorks, Inc. Other products mentioned may be trademarks or registered trademarks of their respective holders. Mercury Computer Systems
believes this information is accurate as of its publication date and is not responsible for any inadvertent errors. The information contained herein is subject to change without notice.
Copyright © 1998 Mercury Computer Systems, Inc.

57

DS-5T-11

AFRL/IFTC
ATTN: RALPH KÖHLER
26 ELECTRONIC PKMY
ROME NY 13441-4514

MERCURY COMPUTER SYSTEMS*- INC
199 RIVERNECK ROAD
CHELMSFORD MA 01824-2820

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD* STE 0944
FT. BELVOIR* VA 22060-6218

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203*.1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME* NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR* 2950 P.STREET
AREA B*BLDG 642
«RIGHT-PATTERSON AFB OH 45433-7765

AFRL/MLME
2977 P STREET* STE 6
«RIGHT-PATTERSON AFB OH 45433-7739

AFRL/HESC-TDC
2698 G STREET* 8LDG 190
yRIGHT-PATTERSON AFB OH 45433-7604

ATTN: SMDC IM PL
US ARMY SPACE 8 MISSILE OEF CMD
P.O. BOX 1500
HUNTSVILLE AL 35807^3801

DL 1

TECHNICAL LIBRARY DD274<PL-TS)
SPAWARSYSCEN
53560 HULL ST.
SAN 0IES0 CA 92152-5001

COR# US ARMY" AVIATION & MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-.08-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: D1BORAH HART
AVIATION BRANCH SVC 122.10
FG310A# RM 931
800 INDEPENDENCE AVE* SW
MASHINSTON DC 20591

AFiyC/MSY
102 HALL 8LVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VSOSACLIBRARY-BLDG 1103)
5 «RIGHT DRIVE
HANSCOM AF8 MA 01731-3004

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

0US0<P)/DTSA/DÜTD
ATTN: PATRICK G- SULLIVAN, JR.
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

♦Total Number of Copies is: 24
DL 2

MISSION
OF

AFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

